Left Termination of the query pattern rotate_in_2(g, a) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

rotate(X, Y) :- ','(append2(A, B, X), append1(B, A, Y)).
append1(.(X, Xs), Ys, .(X, Zs)) :- append1(Xs, Ys, Zs).
append1([], Ys, Ys).
append2(.(X, Xs), Ys, .(X, Zs)) :- append2(Xs, Ys, Zs).
append2([], Ys, Ys).

Queries:

rotate(g,a).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ROTATE_IN(X, Y) → U11(X, Y, append2_in(A, B, X))
ROTATE_IN(X, Y) → APPEND2_IN(A, B, X)
APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → U41(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN(Xs, Ys, Zs)
U11(X, Y, append2_out(A, B, X)) → U21(X, Y, append1_in(B, A, Y))
U11(X, Y, append2_out(A, B, X)) → APPEND1_IN(B, A, Y)
APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN(Xs, Ys, Zs)

The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)
APPEND1_IN(x1, x2, x3)  =  APPEND1_IN(x1, x2)
U31(x1, x2, x3, x4, x5)  =  U31(x1, x5)
U41(x1, x2, x3, x4, x5)  =  U41(x1, x5)
APPEND2_IN(x1, x2, x3)  =  APPEND2_IN(x3)
U21(x1, x2, x3)  =  U21(x3)
U11(x1, x2, x3)  =  U11(x3)
ROTATE_IN(x1, x2)  =  ROTATE_IN(x1)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

ROTATE_IN(X, Y) → U11(X, Y, append2_in(A, B, X))
ROTATE_IN(X, Y) → APPEND2_IN(A, B, X)
APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → U41(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN(Xs, Ys, Zs)
U11(X, Y, append2_out(A, B, X)) → U21(X, Y, append1_in(B, A, Y))
U11(X, Y, append2_out(A, B, X)) → APPEND1_IN(B, A, Y)
APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN(Xs, Ys, Zs)

The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)
APPEND1_IN(x1, x2, x3)  =  APPEND1_IN(x1, x2)
U31(x1, x2, x3, x4, x5)  =  U31(x1, x5)
U41(x1, x2, x3, x4, x5)  =  U41(x1, x5)
APPEND2_IN(x1, x2, x3)  =  APPEND2_IN(x3)
U21(x1, x2, x3)  =  U21(x3)
U11(x1, x2, x3)  =  U11(x3)
ROTATE_IN(x1, x2)  =  ROTATE_IN(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 6 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN(Xs, Ys, Zs)

The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)
APPEND1_IN(x1, x2, x3)  =  APPEND1_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND1_IN(x1, x2, x3)  =  APPEND1_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND1_IN(.(X, Xs), Ys) → APPEND1_IN(Xs, Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN(Xs, Ys, Zs)

The TRS R consists of the following rules:

rotate_in(X, Y) → U1(X, Y, append2_in(A, B, X))
append2_in([], Ys, Ys) → append2_out([], Ys, Ys)
append2_in(.(X, Xs), Ys, .(X, Zs)) → U4(X, Xs, Ys, Zs, append2_in(Xs, Ys, Zs))
U4(X, Xs, Ys, Zs, append2_out(Xs, Ys, Zs)) → append2_out(.(X, Xs), Ys, .(X, Zs))
U1(X, Y, append2_out(A, B, X)) → U2(X, Y, append1_in(B, A, Y))
append1_in([], Ys, Ys) → append1_out([], Ys, Ys)
append1_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append1_in(Xs, Ys, Zs))
U3(X, Xs, Ys, Zs, append1_out(Xs, Ys, Zs)) → append1_out(.(X, Xs), Ys, .(X, Zs))
U2(X, Y, append1_out(B, A, Y)) → rotate_out(X, Y)

The argument filtering Pi contains the following mapping:
rotate_in(x1, x2)  =  rotate_in(x1)
U1(x1, x2, x3)  =  U1(x3)
append2_in(x1, x2, x3)  =  append2_in(x3)
[]  =  []
append2_out(x1, x2, x3)  =  append2_out(x1, x2)
.(x1, x2)  =  .(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x1, x5)
U2(x1, x2, x3)  =  U2(x3)
append1_in(x1, x2, x3)  =  append1_in(x1, x2)
append1_out(x1, x2, x3)  =  append1_out(x3)
U3(x1, x2, x3, x4, x5)  =  U3(x1, x5)
rotate_out(x1, x2)  =  rotate_out(x2)
APPEND2_IN(x1, x2, x3)  =  APPEND2_IN(x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND2_IN(x1, x2, x3)  =  APPEND2_IN(x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

APPEND2_IN(.(X, Zs)) → APPEND2_IN(Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: